The number of C3-free vertices on 3-partite tournaments

نویسندگان

  • Ana Paulina Figueroa
  • Bernardo Llano
  • Rita Zuazua
چکیده

Let T be a 3-partite tournament. We say that a vertex v is −→ C3 -free if v does not lie on any directed triangle of T . Let F3(T ) be the set of the −→ C3 -free vertices in a 3-partite tournament and f3(T ) its cardinality. In this paper we prove that if T is a regular 3-partite tournament, then F3(T )must be contained in one of the partite sets of T . It is also shown that for every regular 3-partite tournament, f3(T ) does not exceed n 9 , where n is the order of T . On the other hand, we give an infinite family of strongly connected tournaments having n− 4 −→ C3 free vertices. Finally we prove that for every c ≥ 3 there exists an infinite family of strongly connected c-partite tournaments, Dc(T ), with n− c − 1 −→ C3 -free vertices. © 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tight bound on the number of C_3-free vertices on regular 3-partite tournaments

Let T be a 3-partite tournament. We say that a vertex v is −→ C3-free if v does not lie on any directed triangle of T . Let F3(T ) be the set of the −→ C3-free vertices in a 3-partite tournament and f3(T ) its cardinality. In a recent paper, it was proved that if T is a regular 3-partite tournament, then f3(T ) < n 9 , where n is the order of T . In this paper, we prove that f3(T ) ≤ n 12 . We ...

متن کامل

Weakly Complementary Cycles in 3-Connected Multipartite Tournaments

The vertex set of a digraph D is denoted by V (D). A c-partite tournament is an orientation of a complete c-partite graph. A digraph D is called cycle complementary if there exist two vertex disjoint cycles C1 and C2 such that V (D) = V (C1) ∪ V (C2), and a multipartite tournament D is called weakly cycle complementary if there exist two vertex disjoint cycles C1 and C2 such that V (C1) ∪ V (C2...

متن کامل

On the 3-kings and 4-kings in multipartite tournaments

Koh and Tan gave a sufficient condition for a 3-partite tournament to have at least one 3-king in [K.M. Koh, B.P. Tan, Kings in multipartite tournaments, Discrete Math. 147 (1995) 171–183, Theorem 2]. In Theorem 1 of this paper, we extend this result to n-partite tournaments, where n 3. In [K.M. Koh, B.P. Tan, Number of 4-kings in bipartite tournaments with no 3-kings, Discrete Math. 154 (1996)...

متن کامل

Cycles through a given arc in almost regular multipartite tournaments

If x is a vertex of a digraph D, then we denote by d(x) and d−(x) the outdegree and the indegree of x, respectively. The global irregularity of a digraph D is defined by ig(D) = max{d+(x), d−(x)}−min{d+(y), d−(y)} over all vertices x and y of D (including x = y). If ig(D) = 0, then D is regular and if ig(D) ≤ 1, then D is almost regular. A c-partite tournament is an orientation of a complete c-...

متن کامل

k-kernels in multipartite tournaments

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent set of vertices (if u, v ∈ N then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l). A k-kernel is a (k, k − 1)-kernel. An m-partite tournament is an orientation of an m-partite complete graph. In this pap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 310  شماره 

صفحات  -

تاریخ انتشار 2010